NATURAL LOCALIZED MOLECULAR ORBITAL (NLMO) ANALYSIS:

Maximum off-diagonal element of DM in NLMO basis: 0.74927D-10

Hybridization/Polarization Analysis of NLMOs in NAO Basis: NLMO/Occupancy/Percent from Parent NBO/ Atomic Hybrid Contributions

1.	(2.00000)	99.6544%	BD (1) H 1- N 3 28.951% H 1 s(100.00%) 70.708% N 3 s(30.18%)p 2.31(69.82%)
2	(2,00000)	99 66108	0.253% C 4 s(5.84%)p16.14(94.16%) 0.076% O 5 s(43.76%)p 1.29(56.24%) BD (1) H 2- N 3
2.	(2.00000)	JJ.00108	28.425% H 2 s(100.00%) 71.242% N 3 s(29.47%)p 2.39(70.53%)
2	(0.00000)	00 01 41 0	0.198% C 4 S (1.34%) p/3.58 (98.66%) 0.040% O 5 s (19.63%) p 4.09 (80.37%) 0.092% H 6 s (100.00%)
3.	(2.00000)	99.91418	BD (1) N 3- C 4 0.012% H 1 s(100.00%) 0.016% H 2 s(100.00%)
			64.097% N 3 s(37.96%)p 1.63(62.04%) 35.830% C 4 s(32.46%)p 2.08(67.54%) 0.013% O 5 s(2.79%)p34.84(97.21%)
4.	(2.00000)	99.9625%	0.033% H 6 s(100.00%) BD (1) C 4- O 5 0.037% N 3 s(0.00%) p 1.00(100.00%)
			30.529% C 4 s(0.00%)p 1.00(100.00%) 69.434% O 5 s(0.00%)p 1.00(100.00%)
5.	(2.00000)	99.9011%	BD (2) C 4- O 5 0.056% H 1 s(100.00%) 0.028% N 3 s(10.43%)p 8 59(.89 57%)
			34.069% C 4 s(32.20%)p 2.11(67.80%) 65.833% O 5 s(41.38%)p 1.42(58.62%)
6.	(2.00000)	99.4640%	BD (1) C 4- H 6 0.296% H 2 s(100.00%) 0.153% N 3 s(43.44%)p 1.30(56.56%)
			58.566% C 4 s(36.27%)p 1.76(63.73%) 0.051% O 5 s(2.05%)p47.81(97.95%)
7.	(2.00000)	99.9610%	CR (1) N 3 99.963% N 3 s(100.00%)p 0.00(0.00%)
8.	(2.00000)	99.9694%	0.024% C 4 s(17.87%)p 4.60(82.13%) CR (1) C 4 99.974% C 4 s(100.00%)p 0.00(0.00%)
9.	(2.00000)	99.9814%	0.015% H 6 s(100.00%) CR (1) 0 5
10.	(2.00000)	90.3414%	0.014% C 4 S(15.50%)p 5.45(84.50%) 99.986% O 5 s(100.00%)p 0.00(0.00%) LP (1) N 3
			90.341% N 3 s(0.00%)p 1.00(100.00%) 6.702% C 4 s(0.00%)p 1.00(100.00%)
11.	(2.00000)	99.1301%	LP (1) O 5 0.019% H 1 s(100.00%)
			0.030% H 2 s(100.00%) 0.030% N 3 s(9.83%)p 9.18(90.17%) 0.736% C 4 s(15.34%)p 5 52(84 66%)
			99.130% O 5 s(58.64%)p 0.71(41.36%) 0.053% H 6 s(100.00%)

12. (2.00000) 94.2730% LP (2) O 5 0.140% H 1 s(100.00%) 0.070% H 2 s(100.00%) 1.107% N 3 s(63.37%)p 0.58(36.63%) 3.025% C 4 s(1.57%)p62.67(98.43%) 94.273% O 5 s(0.01%)p 1.00(99.99%) 1.384% H 6 s(100.00%)